Stochastic processes and conformal invariance.

نویسندگان

  • Jan de Gier
  • Bernard Nienhuis
  • Paul A Pearce
  • Vladimir Rittenberg
چکیده

We discuss a one-dimensional model of a fluctuating interface with a dynamic exponent z=1. The events that occur are adsorption, which is local, and desorption which is nonlocal and may take place over regions of the order of the system size. In the thermodynamic limit, the time dependence of the system is given by characters of the c=0 logarithmic conformal field theory of percolation. This implies in a rigorous way, a connection between logarithmic conformal field theory and stochastic processes. The finite-size scaling behavior of the average height, interface width and other observables are obtained. The avalanches produced during desorption are analyzed and we show that the probability distribution of the avalanche sizes obeys finite-size scaling with new critical exponents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Schramm-Loewner evolution and its application to critical systems

In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...

متن کامل

Conformal Invariance and Stochastic Loewner Evolution Predictions for the 2D Self-Avoiding Walk - Monte Carlo Tests

Simulations of the self-avoiding walk (SAW) are performed in a half-plane and a cutplane (the complex plane with the positive real axis removed) using the pivot algorithm. We test the conjecture of Lawler, Schramm and Werner that the scaling limit of the two-dimensional SAW is given by Schramm’s Stochastic Loewner Evolution (SLE). The agreement is found to be excellent. The simulations also tes...

متن کامل

Direct evidence for conformal invariance of avalanche frontiers in sandpile models.

Appreciation of stochastic Loewner evolution (SLE_{kappa}) , as a powerful tool to check for conformal invariant properties of geometrical features of critical systems has been rising. In this paper we use this method to check conformal invariance in sandpile models. Avalanche frontiers in Abelian sandpile model are numerically shown to be conformally invariant and can be described by SLE with ...

متن کامل

Invariance principle for stochastic processes with short memory

Abstract: In this paper we give simple sufficient conditions for linear type processes with short memory that imply the invariance principle. Various examples including projective criterion are considered as applications. In particular, we treat the weak invariance principle for partial sums of linear processes with short memory. We prove that whenever the partial sums of innovations satisfy th...

متن کامل

SLEκ Growth Processes and Conformal Field Theories

SLEκ stochastic processes describe growth of random curves which, in some cases, may be identified with boundaries of two dimensional critical percolating clusters. By generalizing SLEκ growths to formal Markov processes on the central extension of the 2d conformal group, we establish a connection between conformal field theories with central charges cκ = 1 2(3κ−8)( 6 κ−1) and zero modes – obse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003